
CISM exercise II: run diagnostic test cases
From Interactive System for Ice sheet Simulation

Contents
1 Introduction
2 The Dome test case
3 The Confined Shelf test case
4 The ISMIP-HOM test cases

4.1 Running the model test cases
4.2 Plotting model output

5 Additional Exercises
5.1 ISMIP-HOM A with shallow-ice dynamics
5.2 ISMIP-HOM A: Newton versus Picard

Introduction
In this exercise, we will run a few of CISM's higher-order test cases, which span a wide range of flow regimes.
Since the test cases are small and can be run on a single processor, we will run them "interactively" (that is,
without submitting the jobs to the queue). First, make a directory on the scratch space to run the code and store the
output, for example,

mkdir /scratch2/username/cism

(where "username" is your username). Now copy the relevant directories there. From within the "CISM-
LANL-4-2011/tests/" subdirectory,

cp -r higher-order /scratch2/username/cism/

This subdirectory contains various test cases for the newer, "higher-order" dynamical core in CISM. Within the
"higher-order" directory you will see the following subdirectories,

dome/ # parabolic shaped dome with simple boundary conditions
ismip-hom/ # ISMIP-HOM test suite
ross/ # Ross ice shelf test case
shelf/ # ice shelf test cases on simplified domains

along with a few other files. You may want to look over the tests/higher-order/README file at some point but
most of the necessary information from that file is contained on this page. While you are welcome to explore any
of the test cases on your own (most of them can be run by simply following the instructions in the README files
within each subdirectory), for this exercise we will pick a few representative examples that can be run relatively
quickly.

CISM exercise II: run diagnostic test cases - Interactive System ... http://websrv.cs.umt.edu/isis/index.php/CISM_exercise_II:_run...

1 of 11 4/26/11 10:31 PM

Before we can run the code we first need to start an interactive session using one node,

msub -I -A s11_cesm

Once your prompt has been returned to you, make sure that you are still in the directory you want to be in on your
scratch space. Since we've started up a new session you will need to re-source the environment script,

source /usr/projects/cesm/cism/cism-env-csh

CISM uses Python to read and write input/output netCDF files. Here, we need a fairly specific set of Python
toolboxes. To make sure that you have access to the correct version of Python, type "python". You should see the
following first few lines:

Enthought Python Distribution -- www.enthought.com
Version: 7.0-2 (64-bit)
Python 2.7.1 |EPD 7.0-2 (64-bit)| (r271:86832, Nov 29 2010, 13:51:37)

If instead you see,

Python 2.4.3 (#1, Sep 8 2010, 11:37:47)
[GCC 4.1.2 20080704 (Red Hat 4.1.2-48)] on linux2

let us know so that we can alter a few things and give you access to the correct version of Python. To escape out of
Python, use <CTRL><D>.

The Dome test case
This is a very simple test case, simulating the three-dimensional flow field within an isothermal, 3d, parabolic
shaped dome with no-slip basal boundary conditions and zero flux lateral boundary conditions. To run the test
case, first change into the "dome" subdirectory,

cd /scratch2/username/cism/higher-order/dome/

Now make a virtual link to the executable file you built in the first exercise. All of the test cases use the
simple_glide executable, which is built from the simple_glide.F90 driver in example-drivers/simple_glide/src/. To
link to it from your scratch space type,

ln -s /path/to/your/project/space/CISM-LANL-4-2011/example-drivers/simple_glide/src/simple_glide ./

You can then execute the test with

python dome.py

The call to the python script first builds an input netCDF file in the output/ subdirectory and executes
simple_glide. In general, whenever simple_glide is executed, it expects to be followed by the name of a text file
with the ".config" extension. If such a file is not specified, you will usually see something like

CISM exercise II: run diagnostic test cases - Interactive System ... http://websrv.cs.umt.edu/isis/index.php/CISM_exercise_II:_run...

2 of 11 4/26/11 10:31 PM

Dome test case: Screen grab of model output from dome test case using NCVIEW. Shown are the velocity magnitude in
map view (color plot), the surface speed across the ice dome, and a vertical velocity profile from approximately half way

between the ice divide (center) and the margin (click for higher-resolution image).

Enter name of GLIDE configuration file to be read

Here, the "dome.config" script from within this directory is passed to simple_glide by the "dome.py" python
script.

While there are numerous default settings in the code, in general it will need a configuration file of some sort to
specify various things like grid size and spacing, various solver options, boundary conditions, etc. A good way to
get a feel for what these options are and what parts of the code they trigger is to look in the ".config" file for an
option you want to understand (e.g. "evolution = 3") and then "grep" for that option in the file glide_types.F90 in
the libglide/ subdirectory from within the main directory where you built the code.

As the code runs, you will see some output to the screen like

CISM exercise II: run diagnostic test cases - Interactive System ... http://websrv.cs.umt.edu/isis/index.php/CISM_exercise_II:_run...

3 of 11 4/26/11 10:31 PM

(dH/dt using incremental remapping)
time = 0.0000000

Running Payne/Price higher-order dynamics solver

iter # resid (L2 norm) target resid

1 223.257 0.100000E-03
2 223.150 0.100000E-03
3 216.909 0.100000E-03
4 203.843 0.100000E-03
5 180.486 0.100000E-03
6 149.276 0.100000E-03
7 116.333 0.100000E-03
...
39 0.341224E-03 0.100000E-03
40 0.226718E-03 0.100000E-03
41 0.150639E-03 0.100000E-03
42 0.100090E-03 0.100000E-03
43 0.665039E-04 0.100000E-03

The output you see here is fairly standard. It tells us the following information

Which solver we are using to evolve the ice thickness (if at all). Here, we see that we are using incremental
remapping (which we will discuss further later on). However, looking in the ".config" file we see that the
start and end times are identical, so no geometric evolution will take place; we are simply after a diagnostic
solution here.

1.

The current time step we are solving for.2.
The dynamics scheme we are using (here, the Blatter-Pattyn equations as formulated and solved by Payne
and Price).

3.

the non-linear iteration number, the current residual (the L2 norm of the vector r = Ax - b), and the target
residual

4.

Note that when the residual is less than or equal to the target residual, the nonlinear iterations are halted and we
have a "converged" solution (i.e. we have the answer). Here it took 43 nonlinear iterations to arrive at a converged
solution.

You can look at the model output using any convenient netCDF file viewer. A python-based netCDF file viewer,
viewNetCDF.py is included in top level of the tests/higher-order subdirectory. Another common viewer installed
on many machines (including the machine used here) is NCVIEW. To examine the output file using NCVIEW, type

ncview output/dome.out.nc

Your output for the variable velnorm (the ice speed) at level "0" (sigma coordinate level 0, which is the upper
surface of the ice sheet), should look something like what is shown in the figure labeled Dome test case. Take a
minute to play around with the different buttons on NCVIEW to see what they do. You can step through the
vertical levels of any of the 3d model output fields, click on the color contour plots to obtain 2d profiles, change
the color scheme, and for variables that change in time, run simple "movies" showing a variables evolution over
time (we will do this later).

Admittedly, this is not a very exciting test case. However, as a sanity check it should confirm whether or not the
model is working as expected and shows that, for a very "shallow-ice" like test case, the model indeed reproduces
something that looks very much like shallow-ice flow.

The Confined Shelf test case

CISM exercise II: run diagnostic test cases - Interactive System ... http://websrv.cs.umt.edu/isis/index.php/CISM_exercise_II:_run...

4 of 11 4/26/11 10:31 PM

Confined shelf test case: Along (right) and across (left) flow velocities for the
confined shelf test case. The upper panel (color) shows results using CISM and the

lower panel shows results from the EISMINT ice shelf intercomparison project
(http://homepages.vub.ac.be/~phuybrec/eismint/iceshelf.html) for the same test case.

Solid black contour lines are the same in both plots (click for higher-resolution image).

Now we will go all the way to
the other end of the spectrum
and demonstrate that the exact
same model can also accurately
reproduce ice shelf flow. In the
following idealized ice shelf
test case, there has been no
change at all in the governing
equations of the model. The
only thing that has changed is
the geometry and the boundary
conditions of the test problem.
Instead of a parabolic dome
with no basal slip we now have
a flat, floating slab of ice with
free-basal slip, zero-flux
boundary conditions on three
sides, and open-ocean (ice
shelf) boundary conditions on
the fourth side.

To run the test case, change
from the "higher-order/dome/"
subdirectory into the "/higher-
order/shelf/" subdirectory.
There are two idealized ice
shelf tests cases here, confined-
shelf.py and circular-shelf.py.
To run the confined shelf test
case, proceed with a similar set of steps as when running the dome test case. First, link to the simple_glide
executable as you did before, then run the test with,

python confined-shelf.py

As in the previous test case, you should see gradually decreasing residuals as screen output. When the test
completes, examine the output with

ncview output/confined-shelf.out.nc

A color contour plot of CISM output (made in Matlab) is shown in the figure labeled Confined shelf test case.
The black and white contour plot shows output for the same experiment using an SSA (ice shelf) model. It is from
experiment 3 (page 7) of the EISMINT (http://homepages.vub.ac.be/~phuybrec/eismint.html) (European Ice Sheet
Model InTercomparison) ice shelf intercomparison project (http://homepages.vub.ac.be/~phuybrec/eismint
/iceshelf.html) documentation (http://homepages.vub.ac.be/~phuybrec/eismint/shelf-descr.pdf) . We will return to
this experiment and add some additional complexity to it in a later exercise.

If there is time, you may also want to try running the "circular-shelf" experiment, which demonstrates that CISM
can also implement an accurate ice shelf boundary condition for an ice shelf front with a non-trivial shape in map
view (i.e. one for which the shelf-front normal vectors are not parallel to coordinate directions).

CISM exercise II: run diagnostic test cases - Interactive System ... http://websrv.cs.umt.edu/isis/index.php/CISM_exercise_II:_run...

5 of 11 4/26/11 10:31 PM

ISMIP-HOM A Setup: Doubly periodic basal roughness with no sliding. Ice
thickness, basal topography, and surface elevation are shown. At the lateral boundaries,

velocities are doubly periodic (click for higher-resolution image).

ISMIP-HOM C Setup: Doubly periodic basal traction coefficient with sliding. Ice
thickness, basal topography, and surface elevation are shown. At the lateral boundaries,

velocities are doubly periodic (click for higher-resolution image).

The ISMIP-HOM test cases
The last set of diagnostic
problems we will look at are
from the ISMIP-HOM
(http://homepages.ulb.ac.be
/~fpattyn/ismip/) test suite,
which was specifically
designed for "higher-order"
models and nicely
demonstrates the difference
between higher-order and
0-order (or "shallow ice")
models. While the test suite
includes a total of 6 tests we
will look only at the tests for
diagnostic solutions on
idealized, three-dimensional
domains. Each of these tests
(A and C) includes a subset of
6 tests for a range of domain
lengths.

Both tests consist of a
uniformly sloping slab of ice
with periodic lateral velocities
in the x and y directions (i.e.
in map plane). For test A, the
basal topography varies
periodically in x and y
directions and the there is a
no-slip basal boundary
condition. For test C, basal

sliding is allowed. The basal traction coefficient varies periodically in x and y and the thickness is uniform
throughout the domain. While the amplitude of the variations (topography in A and traction coefficient in C) is the
same for all tests, the wavelength, λ, is decreased by a factor of two for each successive test. For λ=160 km, the
velocity solutions are essentially equal to those from a 0-order shallow ice model. When halving λ to 80 km, then
to 40, 20, 10, and finally 5 km, the higher-order components of the stress balance become successively more
important to the velocity solution. Figures 1 and 2 below show relevant input data for each of the two experiments
for λ = 80km. Here, in the interest of time, we will only run tests for the first three wavelengths in the series (160,
80, and 40 km).

Running the model test cases

To run the experiments, we will use some python scripts developed by colleagues at the University of Montana
(also, see this link). As with the other test cases, several Python scripts set up the necessary netCDF input and
output files. The python scripts simplify things here by allowing you to run and plot the results from multiple tests
and multiple domain wavelengths sequentially. In addition, they plot CISM output relative to the model means and
standard deviations from the actual benchmark study of Pattyn et. al (2008) (http://www.the-cryosphere.net
/2/95/2008/tc-2-95-2008.html) . This is a great convenience (as anyone who has ever done this on their own will

CISM exercise II: run diagnostic test cases - Interactive System ... http://websrv.cs.umt.edu/isis/index.php/CISM_exercise_II:_run...

6 of 11 4/26/11 10:31 PM

attest to!). First, move into the tests/higher-order/ismip-hom subdirectory. To execute test A, for λ=160, 80, and 40
km, type

python runISMIPHOM.py --exp=a --size=160,80,40

As with the other test cases above, you should see some screen output showing model residuals decreasing as the
nonlinear iterations proceed (***Did you remember to make a virtual link to the simple_glide executable?***?).

Plotting model output

To compare CISM output from your model runs with that from the ISMIP-HOM benchmark study of Pattyn et. al
(2008) (http://www.the-cryosphere.net/2/95/2008/tc-2-95-2008.html) , we will execute the python plotting scripts
in a similar manner. For test A, type

python plotISMIPHOM.py --exp=a --size=160,80,40

Your output figure will have a ".png" extension and will be placed in the output/ subdirectory. It should look
something like the figure here labeled ISMIP-HOM A Output. There is a simple image viewer on the cluster
where we have been running the code (the classic XV). To use it to view the output form you test case type,

xv output/ISMIP-HOM-A-glm1.png

CISM exercise II: run diagnostic test cases - Interactive System ... http://websrv.cs.umt.edu/isis/index.php/CISM_exercise_II:_run...

7 of 11 4/26/11 10:31 PM

ISMIP-HOM A Output: CISM output for experiment A run for wavelengths of 160,
80, and 40 km. Black solid lines are CISM output, blue (red) dashed and shaded areas

show the mean and standard deviation from all first-order (Stokes) models participating
in the benchmark exercise. Model velocity is shown on the vertical axis and normalized

distance along the domain, at y=0.25*λ, is shown on the horizontal axis (click for
higher-resolution image).

ISMIP-HOM C Output: CISM output for experiment C run for wavelengths of 160,
80, and 40 km. Black solid lines are CISM output, blue (red) dashed and shaded areas

show the mean and standard deviation from all first-order (Stokes) models participating
in the benchmark exercise. Model velocity is shown on the vertical axis and normalized

distance along the domain, at y=0.25*λ, is shown on the horizontal axis (click for
higher-resolution image).

Now go through the same set
of steps for test case C (again,
with wavelengths of 160, 80,
and 40 km). You should get a
figure that looks like the figure
labeled ISMIP-HOM-C
Output.

For additional information on
running and plotting results for
the ISMIP-HOM test suite, see
the README file in the
tests/higher-order/ismip-hom
subdirectory.

Additional
Exercises
ISMIP-HOM A with
shallow-ice dynamics

To clarify the importance of the
higher-order stresses in the
model velocity solutions, it is
instructive to go back and
re-run one of the above tests
using the shallow-ice model.
To do this, we first need to edit
some of the configuration file
options in the file
ishom.a.config. Copy the
original file to a backup version
first (e.g. cp ishom.a.config
ishom.a.config.orig). Now open
ishom.a.config with your
favorite editor (e.g. VI or
Emacs) and look for the following sections:

[options]
flow_law = 2 # constant and uniform rate factor
periodic_ew = 1 # doubly periodic lateral boundary conditions
periodic_ns = 1
evolution = 3

[ho_options]
diagnostic_scheme = 1 # Payne/Price 1st-order dynamics
which_ho_babc = 4 # no-slip basal boundary conditions
which_ho_efvs = 0 # nonlinear eff. visc. w/ n=3
which_ho_sparse = 1 # use SLAP GMRES for linear solver

To implement 0-order shallow ice dynamics rather than first-order dynamics, change the following flags in the

CISM exercise II: run diagnostic test cases - Interactive System ... http://websrv.cs.umt.edu/isis/index.php/CISM_exercise_II:_run...

8 of 11 4/26/11 10:31 PM

ISMIP-HOM A SIA Output: CISM output for experiment A, run for wavelengths of
160, 80, and 40 km using shallow-ice dyanmics. Black solid lines are CISM output,
blue (red) dashed and shaded areas show the mean and standard deviation from all

first-order (Stokes) models participating in the benchmark exercise. Model velocity is
shown on the vertical axis and normalized distance along the domain, at y=0.25*λ, is

shown on the horizontal axis (click for higher-resolution image).

options and ho_options sections,

[options]
evolution = 0 # now SIA dynamics!

[ho_options]
diagnostic_scheme = 0 # now SIA dynamics!

Now re-run the ISMIP-HOM test case

python runISMIPHOM.py --exp=a, --size=160,80,40

You won't see any output, but you will probably notice that the model gets through both of these tests much more
quickly than when using the first-order stress balance (one good thing about shallow ice dynamics, they are
computationally cheap!). When the model is done running, plot the results again,

python plotISMIPHOM.py --exp=a, --size=160,80,40

Your results should look something like what is shown in the figure labeled ISMIP-HOM-A SIA Output. Can
you explain why the velocity field from the shallow ice model is identical despite the change in the wavelength of
the basal topography for the three experiments? As far as the shallow-ice model is concerned, these three domains
are all identical because the flow rate is controlled only by the local slope and ice thickness (which is the same
despite the different wavelengths of the basal topography).

ISMIP-HOM A:
Newton versus Picard

The increasing difficulty of
the ISMIP-HOM experiments
as the domain wavelength
decreases provides a good
opportunity to demonstrate
the differences between
handling the model nonlinear
with a Picard versus a Newton
iteration (as discussed in more
detail on the model solution
page). Because the current
Newton solver in CISM is still
under development, we have
to make a few more
simplifications here to
compare the two. In

particular, we have not yet implemented periodic boundary conditions in the Newton iteration in which case we
will have to turn these "off" for the Picard iteration as well. As above, we need to edit a few sections in your your
original ishom.a.config file (which was hopefully copied before you made the previous edits). First, to run the test
cases using Picard, change the periodic flags in the options section of your .config file as follows:

CISM exercise II: run diagnostic test cases - Interactive System ... http://websrv.cs.umt.edu/isis/index.php/CISM_exercise_II:_run...

9 of 11 4/26/11 10:31 PM

[options]
periodic_ew = 0 # Now zero-velocity rather than doubly periodic!
periodic_ns = 0

No re-run the test with the Picard iteration and the new boundary conditions. To get an approximate total time for
the run and to dump the output to a .txt file (in case we want to plot it later on), use

nohup time python runISMIPHOM.py -e a -s 40,20,10 > picard-log.txt &

Also notice that we are now running a few of the shorter wavelength test cases in order to work the model a little
bit harder.

Do the same but using the Newton iteration instead. For this case we need to add an additional flag to the
ho_options section of the .config file:

[ho_options]
which_ho_nonlinear = 1 # add this flag to call JFNK for nonlinear iteration rather than Picard!

To re-run the test case, time the model run and save the output, use

nohup time python runISMIPHOM.py -e a -s 40,20,10 > newton-log.txt &

Note that the "nohup" command sets your job to running in the background so that you can do other things while
you wait for it to complete. To check the status of your job, type

jobs -l

If your job is still running you will see something like

72195 Running nohup time python runISMIPHOM.py -e a -s 40,20,10 > newton-log.txt &

where the first number is the job ID.

When your jobs have both completed, look in the scratch/ subdirectory for your log.txt files. You should have a
record of the iteration count for each job and also a record of the total time to run the job at the very bottom. You
should notice that it takes ~4x fewer nonlinear iterations to reach converged solutions. The Newton iteration in this
version of the code has not been optimized yet, so there is an additional "cost" associated with using it. Thus, you
may notice that the overall savings in computational time is only about ~25% relative to Picard. In other
developmental versions of the code for which the Newton iteration has been better optimized the computational
time savings is usually a factor of ~2-5x (e.g. see the figure in this) section.

Go to the third set of exercises.

Return to main coarse page

Retrieved from "http://websrv.cs.umt.edu/isis/index.php/CISM_exercise_II:_run_diagnostic_test_cases"

CISM exercise II: run diagnostic test cases - Interactive System ... http://websrv.cs.umt.edu/isis/index.php/CISM_exercise_II:_run...

10 of 11 4/26/11 10:31 PM

This page was last modified on 26 April 2011, at 22:30.

CISM exercise II: run diagnostic test cases - Interactive System ... http://websrv.cs.umt.edu/isis/index.php/CISM_exercise_II:_run...

11 of 11 4/26/11 10:31 PM

